Article de journal
Zeolitic imidazolate framework-8 (ZIF-8) doped TiZSM-5 and Mesoporous carbon for antibacterial characterization


Domaines de Recherche
Currently no objects available

Détails sur la publication
Liste des auteurs: Rehman S, NAYAGAM V
Editeur: Elsevier
Année de publication: 2020
Journal: Saudi Journal of Biological Sciences
Numéro du volume: 27
Numéro de publication: 7
Page d'accueil: 1726
Dernière page: 1736
Nombre de pages: 11
ISSN: 1319-562X
Web of Science ID: 000540720500006
PubMed-ID: 32565689
Scopus ID: 85085277943
eISSN: 2213-7106


Drug resistant bacteria affects millions worldwide and remains a serious threat to health care system. The study reports the first application of hybrid nanocomposites based on zeolitic imidazolate framework-8 (ZIF-8) with MFI structured zeolite Ti-ZSM-5 (TiZ5) and mesoporous carbon (MC). The composite was designated as TiZ5/ZIF-8 and MC/ZIF-8 was studied for antibacterial activity. Bioactive components Zn2+ and 2-methyl imidazole present in ZIF-8 was found to exert significant antibacterial effect on Escherchia. coli and Staphyloccocus. No other antibiotic drugs are required. For comparative purpose, Fe-BTC MOF (BTC = 1,3,5‐benzenetricarboxylate) was used as second set of nanoformulations (TiZ5/Fe-BTC and MC/Fe-BTC) but showed a lower antibacterial activity. The phase (X-ray diffraction), texture (BET surface area), coordination (DRS-UV–Vis), and morphology (TEM) was investigated. XRD showed the presence of nanosized ZIF-8 over TiZ5 and MC. Surface area calculation using N2 adsorption isotherm showed a reduction in the micropore surface area of ZIF-8 from 1148 m2/g to 224 m2/g (80%) and an increased meso surface area from 31 m2/g to 59 m2/g (90%). The mesopore pore volume increased significantly from 0.05 cm3/g to 0.12 m2/g. MC/ZIF-8 showed similar textural modifications. FT-IR spectra and DRS-UV–Vis spectra showed distinct composite formation with TiZ5, while a weak absorption of ZIF-8 observed over MC. TEM revealed the presence of nanocomposite MC/ZIF-8 and TiZ5/ZIF-8 distributed in nanosize ranging between 25 and 50 nm. TiZ5/ZIF-8 showed the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of 0.5 and 1 mg/ml, respectively against E. coli. The MIC and MBC of TiZ5/ZIF-8 against S. aureus were 1 and 2 mg/ml, respectively. MC/ZIF-8 composite had second best antibacterial activity. This study shows that ZIF-8 based composite holds a great potential against E. coli and S. aureus.


Projects
Currently no objects available

Mots-clés
Currently no objects available

Documents
Currently no objects available

Dernière mise à jour le 2020-17-08 à 10:40